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A B S T R A C T

Numerous examples of meaningful inter-individual differences in visual processing have been documented in
low- and high-level vision. For mid-level vision or perceptual organization, vision scientists have only recently
started to study the inter-individual differences structure. In this study, we focus on orientation and proximity as
emergent features and combine a quantitative information processing approach with an individual differences
approach. We first replicated the results reported in Hawkins, Houpt, Eidels, and Townsend (2016) in a set of 52
observers. That is, observers showed higher processing capacity for detecting a change in a stimulus config-
uration when the emergent features orientation or proximity were changed. Next, we asked whether individual
differences processing capacities were similar across emergent features. The capacity to detect any type of
change correlated moderately across individuals, whereas the capacity to detect changes in either emergent
feature alone was not strongly correlated. This indicates that there is no general sensitivity to emergent features
and that observers can be good at detecting orientation changes whilst being poor at detecting proximity changes
(and vice versa). An additional exploratory multivariate analysis of the data revealed that response times and
accuracies correlated strongly within each emergent feature. Moreover, specific factors related to change de-
tection and inward displacements were observed, revealing consistent individual differences in our data. We
discuss the results in the context of the literature on individual differences in vision where both specific, frag-
mented factors as well as broad, general factors have been reported.

1. Introduction

Visual perception is frequently characterized as being the result of a
linear, feed-forward process where a visual stimulus is decomposed into
elementary sensations or features (e.g., spatial frequency, orientation,
color). These features form the input for a cascade of processing steps
where neurons become sensitive to increasingly complex stimulus fea-
tures (Palmer, 1999; Wagemans, Wichmann, & Op de Beeck, 2005).
One particular type of features, emergent features, consist of additional
information beyond what is predicted from each component processed
individually. The notion of emergence has played a central role in the
Gestalt theory of perception (Hawkins et al., 2016; Wagemans et al.,
2012). An important piece of evidence showing that the visual system
processes these emergent features is the configural superiority effect. In
an odd-quadrant paradigm, participants are faster and more accurate in
selecting the odd-quadrant from a four-panel display when the

components are presented together with a non-informative context that
elicits the emergent feature compared to when the components are
presented in isolation (Pomerantz & Cragin (2015); Pomerantz, Sager,
& Stoever (1977)). This configural superiority effect is explained in
terms of emergent features: when additional redundant information,
albeit irrelevant in principle, is added to the components, new features
emerge from the relationships between the visual components
(Hawkins et al., 2016). Using this paradigm, several emergent features
have been identified, amongst which proximity, orientation, linearity,
symmetry and surroundedness (Pomerantz & Cragin (2015); Pomerantz
& Portillo (2011)). Other studies have also addressed the neural basis of
the configural superiority effect and the neural coding of emergent
features (e.g., Costa et al., 2018; de-Wit, Kubilius, de Beeck, &
Wagemans, 2013; Kubilius, Wagemans, & Op de Beeck, 2011).

Although this paradigm allows one to learn about the different kinds of
emergent features, it does not allow to study how the different sources of
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information in the quadrants are processed. This was exactly the goal of the
study of Hawkins et al. (2016). Here, the authors introduced a novel change
detection paradigmwhere participants on each trial had to indicate whether
the location of individual dots had changed or not. The dots could either be
presented separately or together, and when together, the location change
could imply a change in emergent feature (orientation or proximity, con-
figural change) or not (control change). To assess information processing
associated with configural and control changes, the authors relied on the
Systems Factorial Technology framework (Townsend & Nozawa, 1995).
This framework consists of a set of powerful nonparametric models and
measures that enable researchers to quantify how different sources of in-
formation are combined in cognitive processing (Houpt, Blaha, McIntire,
Havig, & Townsend, 2014). These different sources of information can
originate from different modalities (e.g., auditory and visual information),
or different stimulus properties within a modality. Systems Factorial Tech-
nology is broadly applicable and allows researchers to answer questions
about four different aspects of processing: architecture, stopping rule, sto-
chastic dependence and workload capacity (Houpt et al., 2014).

Hawkins et al. (2016) focused on workload capacity to assess in-
formation processing for emergent features. Workload capacity de-
scribes how the processing rate of each source changes as more sources
of information are added. More specifically, it assesses how much in-
formation can be processed over time, while the amount of information
is manipulated. The Systems Factorial Technology framework allows to
qualitatively assess workload capacity by classifying the change in
processing rates into three categories. Unlimited capacity refers to
performance with no effect of the increased workload on processing of
the individual sources, that is, the processing rate of the sources re-
mains identical regardless of the workload. Limited capacity, on the
other hand, describes a reduced performance on each source as the
number of sources increases. Finally, super capacity occurs when per-
formance on each source is better under higher workload, indicating
that adding more sources increases the processing speed for individual
sources (Houpt et al., 2014). The capacity coefficient is calculated by
comparing performance with multiple sources of information with a
baseline performance with each single source of information. The
baseline for this comparison is that processing of multiple sources of
information is unlimited capacity, independent and parallel. The ca-
pacity coefficient is described as the ratio of the performance when all
sources of information are present to performance predicted from an
unlimited capacity, independent, and parallel processing system. As a
consequence, a capacity coefficient of 1 indicates unlimited capacity, a
capacity coefficient greater than 1 illustrates super capacity and a ca-
pacity coefficient below 1 implies limited capacity (Houpt et al., 2014).

The results of Hawkins et al. (2016) showed that configural changes are
indeed associated with higher capacity compared to control changes. This
implies that configural changes are more efficiently processed compared to
control changes, and that (changes in) emergent features elicit a different
kind of processing compared to mere location changes. Interestingly,
Hawkins et al. (2016) noted that there was high variation across individuals
in the workload capacity measure. This made it difficult for the authors to
use the capacity coefficient as an absolute measure of configurality for the
different emergent features. However, this observation prompted our in-
terest, as it leads to studying inter-individual variability in information
processing for different emergent features (i.e., similar to Houpt & Blaha
(2015) where individual differences in information processing for configural
learning was assessed).

The study of individual differences is commonly associated with dif-
ferential psychology where personality and intelligence have been ex-
tensively studied. This approach resulted in the formulation of the “Big
Five” personality factors (Goldberg, 1990) and several theories regarding
the structure of intelligence (Gardner, 1983; Spearman, 1904; Sternberg
et al., 1985; Thurstone, 1938). In the spirit of early research on the g factor,
Thurstone (1944) also studied the factorial structure of visual perception.
Contrary to what had been observed in intelligence research, there seemed
to be no general perceptual factor, but a set of different smaller factors each

loading on a specific subset of tasks. Additionally, individual differences
received attention from several vision scientists, including Pickford (1951)
(color), Pirenne, Marriott, and O’Doherty (1958) (night vision, dark adap-
tation), Webster and MacLeod, 1988 (color matching), Sekuler, Wilson, and
Owsley (1984) (contrast sensitivity), Coren and Porac (1987) (illusions),
and Peterzell, Werner, and Kaplan (1995) (contrast sensitivity, color, infant
visual development), to name a few. In contemporary vision science,
however, this structural approach was, until recently, rare. Experimental
rather than correlational data and analyses were the norm, and inter-in-
dividual variability was commonly regarded as measurement error, which
could be discarded by averaging the responses of participants (Kanai & Rees,
2011; Mollon, Bosten, Peterzell, & Webster, 2017; Peterzell, 2016).

Over the last 10 years, however, research on individual differences in
visual perception has witnessed a revival, initiated by Wilmer (2008) and
culminating in several reviews (e.g., de-Wit & Wagemans, 2014; Mollon
et al., 2017; Peterzell, 2016). Interestingly, this rapid growth has occurred
almost entirely separately from the 80 + years of psychometric research
examining visual perception and perceptual organization using correlational
and factorial analyses of individual differences, which culminated in some
extensive and classic reviews (Buckley, Seery, & Canty, 2018; Carroll, 1993;
Lohman, 1979; Schneider & McGrew, 2012).

Among vision scientists, there has been (since Webster & MacLeod,
1988; Sekuler et al., 1984) a search to confirm or discover basic visual
processes using individual differences. Some of these searches have involved
investigations into possible general perceptual factors, with at best weak
evidence for such general factors (e.g., Cappe, Clarke, Mohr, & Herzog,
2014; Bosten et al., 2017; Grzeczkowski, Clarke, Francis, Mast, & Herzog,
2017; Ward, Rothen, Chang, & Kanai, 2017), in line with the results ob-
tained decades earlier by Thurstone (1944). Others have looked for specific
factors related to underlying perceptual mechanisms or processes, with
greater success in various domains. To name a few, contrast sensitivity
(Peterzell & Teller, 1997; Peterzell et al., 1995), ensemble perception
(Haberman, Brady, & Alvarez, 2015), motion perception (Takeuchi,
Yoshimoto, Shimada, Kochiyama, & Kondo (2017)), visual illusions
(Grzeczkowski et al., 2017), and face perception (Wilmer, 2017). Most of
these studies have relied on a correlational approach, where performance on
two or more tasks is computed for each individual and correlated. Asso-
ciations are then taken to be caused by similar mechanisms, whereas dis-
sociations are considered to be evidence for non-shared mechanisms. A
rough summary of these studies is that variability in visual perception is
highly specific, and few correlations are observed across tasks, except when
they are highly similar.

Among psychometricians, there has also been a search to discover
and confirm visual processes using individual differences, historically
rooted in the study of the structure of intelligence. In contrast to vision
scientists, these researchers have found broad general factors which
span broad types of visual processing, and even link weakly to general
cognitive ability (i.e., Spearman’s g). They have also found a variety of
specific factors mostly related to spatial processing and perceptual or-
ganization. As of today, there are over 25 specific factor-analytic
components that have been discovered, including factors for some vi-
sual illusions, Gestalt properties, mental rotation, perceptual speed, etc.
These studies have culminated in a multi-strata model of perceptual
abilities (Buckley et al., 2018; Carroll, 1993; Schneider & McGrew,
2012). Although there have been few attempts to integrate these two
vast and growing literatures (Peterzell, 2019), genuine integration and
synthesis still seems to be lacking. Although the current study was
primarily inspired by the dominant approach in the vision science lit-
erature (i.e., correlating performance on a few tasks), it will become
clear that our results can also be interpreted in the context of the
psychometric literature. As such, the current study potentially provides
an initial step towards bridging both literatures.

Building on the recent study by Hawkins et al. (2016), the current
study aimed to uncover individual differences in the processing char-
acteristics of emergent features. To this end, participants performed a
change detection task in which one or two dots could change location.
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We hypothesised that if emergent features are processed more effi-
ciently than local features, a change would be detected faster and more
accurately when the change in location also involved a change in
emergent feature (configural trials). Moreover, we used the capacity
coefficient as a relative measure to assess workload capacity. We hy-
pothesized that we would replicate the observations of Hawkins et al.
(2016) in that the capacity coefficient would be larger, indicating better
processing efficiency, in configural trials compared to control trials
consisting of a change in the location feature only. However, our main
goal was to quantify individual differences in processing efficiency of
these emergent features and to see whether they would be correlated.
This would indicate a general ability underlying stimulus integration,
independent of the type of feature being manipulated. In order to an-
swer these questions, we replicated the experiments reported in
Hawkins et al. (2016) where processing efficiency associated with
changes in orientation and proximity as emergent features was as-
sessed.

2. Methods

2.1. Participants

52 psychology students from KU Leuven participated in exchange
for two course credits. Participants (6 males and 46 females) were be-
tween 18 and 24 years old (M= 19.05, SD= 1.44) and had normal or
corrected-to-normal vision. 6 participants were excluded from the
analyses because they either failed to participate in both sessions or
showed error rates above 30%. This cut-off score was based on previous
work showing that the capacity coefficient measure becomes unreliable
at error rates over 30% (Townsend & Wenger, 2004). All participants
provided written informed consent before the start of the first session of
the experiment. The experiment was approved by the local ethics
committee (Social and Societal Ethics Committee).

2.2. Materials

The dot stimuli were created in Python 2.7.6 using the PsychoPy library
(Peirce et al., 2019) and shown on a 24 inch monitor with a resolution of
1920 x 1200 pixels and a refresh rate of 60 Hz at a viewing distance of
approximately 50 cm. The distance between the dots’ inner contours was
held constant at 1.10 degrees and each target dot was 0.74 degrees of visual
angle away from the reference dot (illustrated in black on Fig. 1, panel a).
Two types of dot stimuli were used, depending on the type of their location
change: configural and control dot stimuli. For the configural stimuli, the
location change included a change in perceived orientation. More specifi-
cally, after the change, the implicit line connecting the dots had an or-
ientation of approximately 60 degrees away from the horizontal line. This
degree of orientation change was based on the results of a pilot study
conducted by Hawkins et al. (2016). As shown in Fig. 1, panel b, there were
two variations of these configural stimuli: one where the left dot goes down
and the right dot goes up, and vice versa. For proximity, the location change
pertained to the proximity between dots in the configural condition (Fig. 2,
panel b). More specifically, the initial distance between the reference dots
was expanded with a factor of 1.72, which corresponds to a displacement of
0.52 degrees for each dot. This displacement was chosen in accordance with
experiment 3 of Hawkins et al. (2016).

The control stimuli consisted of a location change without a change in
emergent feature. Thus, for orientation, the implicit line between the dots
remained horizontal. The four varieties of these control dots are illustrated
in Fig. 1, panel c. For each of these double-dot stimuli, corresponding single-
dot stimuli were presented as well: either on the left side or the right side.
These dots could change to any of the four locations shown in Fig. 1, panel
a. For proximity, the distance between their inner contours was kept at 1.10
degrees. The two varieties of these control stimuli are illustrated in Fig. 2,
panel c. For each of these double-dot stimuli, corresponding single-dot sti-
mulus location are shown in Fig. 2, panel a.

2.3. Procedure

The procedure of the experiment was based on the experiments
reported in Hawkins et al. (2016). Participants were seated in a dark
room with their head stabilized in a chinrest. Each trial started with a
fixation cross presented for 240 ms at the center of the screen, followed
by a blank display for 27 ms. On single-dot trials, a black dot was
presented 0.72 degrees of visual angle either to the left or to the right of
the center of the screen. On double-dot trials, two black dots were
presented (one to the left and one to the right of fixation). This display
was presented for 120 ms, after which a noise mask was presented for
240 ms. The target display was shown for 120 ms, followed by a white
blank for 1880 ms, during which the participants had to respond
whether a location change had occurred or not (Fig. 3).

At the beginning of the experiment, participants were instructed to press
“N” (no change) on their keyboard if the target dots were in the same lo-
cation as the reference dots and “C” (change) if the target dots’ location had
changed. During the first 20 practice trials, participants received feedback
on their performance after each individual trial. If participants scored below
70% in this practice block, they were encouraged to repeat the 20 practice
trials until their accuracy was above 70%.

During the actual experiment, participants completed a single ses-
sion of 960 trials of the change detection task in six separate blocks.
After each block, which lasted about eight minutes, they received a
break with feedback on their performance. If they scored below 70%,
the experimenter entered the room to motivate the participants to im-
prove their accuracy in the next block(s).

The stimulus conditions in a specific block were randomly de-
termined. However, over all blocks the stimulus conditions were dis-
tributed according to the equal stimulus rates design, a double factorial
paradigm design that ensures that the inter-stimulus contingencies are
zero, thereby reducing stochastic dependency (Houpt et al., 2014).
More specifically, there were 25% no-change trials, 25% double-dot
changes (either configural or control) and 50% single-dot changes.

The emergent features orientation and proximity were run in se-
parate sessions, such that participants completed either the orientation
or proximity session on one day, and the other experiment when they
returned. Because both sessions are almost exactly the same, we report
it here as a single experiment run in two sessions.

2.4. Data analysis

We used R1 for all our analyses. All analyses were performed in
RStudio (RStudio Team, 2018). All code and data to reproduce the
results we report in this paper can be found on the Open Science Fra-
mework: https://osf.io/vgxja/. We first report the same analyses as
conducted by Hawkins et al. (2016) before reporting the individual
differences analysis.

As mentioned in the Participants section, 6 participants were re-
moved prior to analyzing the data. 3 participants failed to reach an

1We relied on R (Version 3.6.1; R Core, 2019) and the R-packages BayesFactor
(Version 0.9.12.4.2; Morey & Rouder, 2018), coda (Version 0.19.3; Plummer,
Best, Cowles, & Vines (2006)), cowplot (Version 1.0.0; Wilke, 2019), dplyr
(Version 0.8.3; Wickham, François, Henry, & Müller, 2019), ez (Version 4.4.0;
Lawrence, 2016), fda (Version 2.4.8; Ramsay, Wickham, Graves, & Hooker
(2018)), forcats (Version 0.4.0; Wickham & Henry, 2019a), ggplot2 (Version
3.2.1; Wickham, 2016), ggthemes (Version 4.2.0; Arnold, 2019), gridExtra
(Version 2.3; Auguie, 2017), HDInterval (Version 0.2.0; Meredith & Kruschke,
2018), Matrix (Version 1.2.17; Bates & Maechler, 2019), papaja (Version
0.1.0.9842; Aust & Barth, 2018), purrr (Version 0.3.3; Henry & Wickham,
2019a), readr (Version 1.3.1; Wickham, Hester, & Francois, 2018), sft (Version
2.2.1; Houpt et al., 2014), stringr (Version 1.4.0; Wickham, 2019b), SuppDists
(Version 1.1.9.4; Wheeler, 2016), tibble (Version 2.1.3; Müller & Wickham,
2019), tidyr (Version 1.0.0; Henry & Wickham, 2019), and tidyverse (Version
1.2.1; Wickham, 2017).
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accuracy of 70%, 2 participants did not return for the second session,
and 1 participant decided to quit during the experiment. Mean response
times were computed based on the correct responses only. For the
analysis of mean response times and accuracies, we computed Bayes
Factors (BFs) to summarize how well the data were predicted by a range
of competing models (i.e., the presence/absence of a main effect of
condition). We adopted Jeffrey’s guidelines to interpret the values of
these BFs: BFs between 1 and 3 are considered to be anecdotal evidence
for one model over the other, whereas a BF between 3 and 10 indicates
substantial evidence. BF > 10, BF > 30 and BF > 100 are regarded
as strong, very strong and decisive evidence, respectively (Jarosz &
Wiley, 2014). As will become clear, for our results, these criteria did not
matter a lot. To compute the capacity z-score, we relied on the sft R
package (Houpt et al., 2014) in which the theoretical work by Houpt
and Townsend (2012) is implemented. For the analysis of the capacity
z-score, we used Bayesian t-tests as introduced by Rouder et al. (2009)
and implemented in the BayesFactor R package (Morey & Rouder,
2018).

As we only had a single measurement occasion for each capacity
score, we could not resort to computing test–retest reliability for ca-
pacity scores. Thus, we decided to compute reliabilities by a split-half
procedure where we split the data set, for each participant separately,
in half. For each half, we then computed the capacity scores for each
participant. This results in two capacity scores (i.e., for each half) for
each participant for each unique condition (i.e., the two-by-two com-
bination of orientation/proximity and control/configural). For each
unique condition, we then computed the correlation between capacity
scores derived from each half. Because a data set like ours can be split in
many arbitrary ways, we decided not to compute this correlation once,
but to do it many times, each time based on a different (but equally

balanced) split of the data. In our case, we ran this procedure a 1000
times, and thus obtained 1000 reliability estimates for each capacity
score. Because computing split-half reliability effectively halves the
number of measurements on which the correlations are based, it is
possible to apply the Spearman–Brown prediction formula to estimate
what the correlation would be if the “test length” (i.e., the experiment
in this case) was doubled again. Thus, for each distribution of corre-
lations, we applied this formula to arrive at the final distributions of
correlation estimates. The resulting distributions served as a benchmark
for how strongly the observed correlations between capacity scores on
each emergent feature would be attenuated by their individual reli-
abilities.

3. Results

3.1. Orientation

Mean response times and accuracies for the double-dot trials are
depicted in Fig. 4, panel a and b. The BF analysis showed decisive
evidence for the main effect of condition on response times over the
empty model containing only subject variability (BF = 1.63e + 69).
The mean posterior decrease in response times in configural trials was
45.30 ms (95% HDI = [39.11, 51.57]) compared to control trials and
59.08 ms (95% HDI = [52.12, 66.18]) compared to no change trials.
For accuracy, there was decisive evidence for a main effect of condition
over the subject only model (BF = 1.21e + 29). On average, partici-
pants had a slightly higher accuracy in configural than control trials
(mean accuracy difference = 0.03, 95% HDI = [0.03, 0.04]) and no
change trials (mean accuracy difference = 0.04, 95% HDI = [0.04,
0.05]).

Fig. 1. (a) Possible locations of the dots for orientation as an emergent feature. (b) Two configural trials in which the location change is accompanied by a change in
orientation. (c) Four control trials in which location changes, but orientation stays the same. Black dots are the reference dots, green and blue dots are the possible
target dots for the left and right channel, respectively. Lines are printed for clarity only and were not depicted in the actual experiment. During the experiment, all
dots were black.
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The capacity z-score (Cz) was used as a summary statistic for the
capacity coefficient (see Fig. 4, panel c). A Cz of zero indicates un-
limited capacity, below zero means limited capacity and above zero
reveals super capacity. A Bayesian t-test indicated that the mean Cz was
higher in the configural condition compared to the control condition
(BF = 3.44e + 08). The mean posterior difference between Cz in
configural and control trials was 3.17, with a 95% HDI between 2.49
and 3.90. Note that the mean capacity z-score of both conditions was
negative, indicating limited capacity in both configural and control
trials.

3.2. Proximity

Mean response times and accuracies for the double-dot trials are
shown in Fig. 5 (panels a and b). The BF analysis showed decisive
evidence for the main effect of condition on response times over the
subject only model (BF = 1.88e + 276). The mean posterior decrease
in response times in configural trials was 106.46 ms (95% HDI =
[100.30, 112.65]) compared to control trials and 99.89 ms (95% HDI =
[92.68, 106.96]) compared to no change trials. There was decisive
evidence for condition as a main effect over the subject only model (BF
= 7.41e + 71) for accuracy as well. On average, participants had a
slightly higher accuracy in configural than control trials (mean accu-
racy difference = 0.08, 95% HDI = [0.07, 0.09]) and no change trials
(mean accuracy difference = 0.06, 95% HDI = [0.05, 0.07]).

For Cz (Fig. 5, panel c), a Bayesian t-test indicated that the con-
figural and control conditions differed in Cz (BF = 1.46e + 07). The
posterior difference between both conditions was 4.32 (95% HDI =
[3.16, 5.48]) favouring the configural trials. Although most participants
showed negative Cz, a marked proportion of participants also showed
positive Cz for the configural condition.

3.3. Individual differences

Emergent features, more specifically orientation and proximity, seem to
provide additional information beyond the mere location feature in a two-
dot display. As was already mentioned by Hawkins et al. (2016), there is
pronounced inter-individual variability in processing efficiency (i.e., Cz
scores). In this analysis, we were interested to examine how these individual
differences correlate across different emergent features. The Pearson cor-
relation coefficient was used to assess the linear relationship between Cz
scores across emergent features. In configural trials, we observed no cor-
relation between the Cz scores for orientation and proximity in the con-
figural trials (r= 0.16) (Fig. 6, panel a). In contrast, there was a moderate
correlation between Cz for orientation and proximity in the control trials of
both experiments (r= 0.40) (Fig. 6, panel b). BFs indicated evidence for a
positive correlation in the control condition (BF = 10.20), but not for the
configural condition (BF= 0.55). In addition, we computed the correlation
between the differences in Cz for control and configural for orientation and
proximity. This correlation quantifies whether changes in Cz (i.e., how
much Cz changes for configural compared to control stimuli) correlate
across emergent features. This correlation turns out to be similar to the one
for configural trials (r=0.22, BF=0.83). Although the numerical value of
this correlation is higher, it seems to be influenced by the outlying data
points (Fig. 6, panel c). Indeed, the Spearman correlation is much lower
(r = 0.08), whereas this is not the case for configural trials (r = 0.16).
These findings suggest rather independent mechanisms underlying the
processing of the emergent features tested here.

3.3.1. Reliability
The split-half reliability of the Cz scores was estimated using a si-

mulation-based procedure. In Fig. 7 the results are visualized (summary
in Table 1). After applying the Spearman-Brown correction, all

Fig. 2. (a) Possible locations of the dots for proxi-
mity as an emergent feature. (b) Configural trial in
which the location change is accompanied by a
change in proximity. (c) Two control trials in which
location changes while proximity stays the same.
Black dots are the reference dots, green and blue
dots are the possible target dots for the left and right
channel, respectively. During the actual experiment,
all dots were black.
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estimated reliabilities are higher than .75 which implies that reliability
is adequate but not perfect. Nevertheless, this implies that the corre-
lations we observed are not due to poor reliability of our measures (i.e.,
correlation attenuation is not too strong).

3.4. Exploratory analysis

In this section, we report an additional analysis we did not plan to
do initially, but we decided to include it here based on an insightful

comment by one of the reviewers. That is, in the previous analysis we
reported a very focused analysis of some pairwise correlations.
However, it may also prove to be interesting to look at the general
multivariate structure of mean response times and accuracies for all
stimuli, together with the capacity coefficients. Such an approach has
the potential to reveal general factors that might be underlying the data
(Peterzell, 2016) rather than the very specific ones we have been
looking into in the previous section. In the next section, we report on
some potential factors we derived from the general correlation matrix

Fig. 3. Procedure of the experiment. Participants saw a fixation cross for 240 ms, followed by a very brief blank (27 ms). The reference dot (single-dot trials) or dots
(double-dot trials) were presented for 120 ms, followed by a 240 ms Gaussian noise mask. The dot or dots were again displayed for 120 ms, after which the
participant had to answer. The dots could either be in the same location as compared to the reference dots (no change), a different location (control change) or a
different location with a change in emergent feature (configural change). For the single-dot stimuli, the control and configural labels refer to the positions associated
with the double-dot stimuli.

Fig. 4. Summary of results for orientation. (a) Mean response times for double-dot trials. (b) Mean accuracy for double-dot trials. (c) Capacity z-scores. Positive
numbers indicate super capacity, whereas negative numbers indicate limited capacity. In general, higher numbers illustrate more efficient processing of the stimuli.
Error bars indicate mean +/- 2 SEM.
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of all dependent variables. Furthermore, we consider the specific cor-
relation matrix of all capacity coefficients. The interested reader is re-
ferred to the Appendix to inspect the correlation matrices of response
times and accuracies in more detail (the numerical versions of the
correlations matrices can be found at https://osf.io/ht4qd/).

3.4.1. Correlation matrix of all dependent variables
In Fig. 8, the pairwise correlations between all dependent variables are

depicted. An initial inspection immediately reveals structured positive and
negative dependencies between different variables. For mean response
times, two clusters are discernible, one pertaining to orientation and the
other to proximity. Interestingly, within these clusters some finer structure
can also be discerned. For example, for orientation the no-change vs. change
trials cluster together. This is similarly so for proximity, yet in the change
trials, there is even further clustering. Interestingly, the two stimuli where
either the left or the right dot changed in the inwards direction correlate
more strongly with each other than with all other change trials for proxi-
mity. Thus, for response times orientation and proximity show separate
factors, and there seems to be a change detection factor. That is, change and
no-change trials dissociate to some extent. At an even more fine-grained
level, proximity trials with inwards stimulus displacements dissociate
slightly from other change trials. Correlations between accuracies show less
clear, but equally interesting structure compared to mean response times. A
large chunk of positive correlations is clustered around the orientation sti-
muli, similar to the pattern for mean response times. Interestingly, however,
all no-change orientation and proximity stimuli mix here in a second cluster.

Thus, for accuracies a similar change detection factor emerges as well.
Accuracies for inward displacements are clustered together again, as are
accuracies for all other proximity stimuli. In sum, a similar picture seems to
emerge as for mean response times. There are separate factors for orienta-
tion and proximity, there is a change detection factor across emergent
features, and an inward displacement factor for proximity.

3.4.2. Capacity coefficient correlations
The correlations for the capacity coefficients depicted in Fig. 9 show

a more nuanced picture of our main results for the correlation between
orientation and proximity. Almost all correlations are in between the
correlation for configural stimuli and the one for control stimuli (i.e.,
those reported earlier). In general, it is not surprising that capacities for
configural and control stimuli correlate to some extent within emergent
features. That is, emergent features are here quantified by a change in
capacity coefficient. If such a change is present in the same direction in
all individuals, it should follow that both capacity coefficients are
correlated to some extent. We interpret the pattern of correlations as an
indicator that there might be evidence for some kind of general capacity
factor, but given the size of the correlations, we consider it to be a mere
indication that deserves to be followed up in future research.

4. Discussion

The goal of this study was twofold. First, we wanted to assess the
replicability of the results reported in Hawkins et al. (2016). Inspired by

Fig. 5. Summary of results for proximity. (a) Mean response times for double-dot trials. (b) Mean accuracy for double-dot trials. (c) Capacity z-scores. Positive
numbers indicate super capacity, whereas negative numbers indicate limited capacity. In general, higher numbers illustrate more efficient processing of the stimuli.
Error bars indicate mean +/- 2 SEM.

Fig. 6. Scatter plots comparing capacity z-scores in (a) configural and (b) control trials for orientation and proximity and (c) for the difference between configural
and control trials for orientation and proximity. Pearson correlation coefficients are displayed in the upper left corner.
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the substantial inter-individual variability in workload capacity for
both orientation and proximity, we asked whether information pro-
cessing would correlate across these tasks. That is, do individuals pro-
cess these emergent features similarly or is there a dissociation already
at this very basic level of stimulus processing?

With respect to the first goal, our results are strikingly similar to those
obtained by Hawkins et al. (2016). The location change in the configural
and control conditions was identical, yet, response times, accuracy and
capacity z-scores were all better in the configural than the control trials.
This indicates that the dots are processed more efficiently when there was a
change in emergent feature, more specifically orientation and proximity, in
addition to the change in location. In sum, for both emergent features, we
very clearly replicated the results obtained by Hawkins et al. (2016).

Hawkins et al. (2016) already devoted some discussion to this, but it is
worth reiterating here that the capacity scores were not uniformly positive
in the configural condition. For orientation, most individuals showed lim-
ited capacity, and some individuals showed super capacity. For proximity,
participants showed limited capacity on average, yet many participants had
a capacity z-score above 0 in the configural condition, indicating super
capacity. On average, these results imply less efficiency for configural trials
compared to when local features are processed in parallel and in-
dependently (equal efficiency would result in a capacity score of zero). One
consequence of this finding is that the capacity score can not be used as an
absolute measure of configural processing. Indeed, it should always be in-
terpreted relative to a control condition in which location changes, yet the
emergent feature under study does not. Second, it reveals the task-specific
nature of the capacity measure. Although the control condition yielded
consistently negative capacity scores for both emergent features, capacity
scores were considerably higher (on average) for proximity compared to
orientation. This might come across as counterintuitive because one could
derive from Figs. 1 and 2 that the orientation change is much less subtle
compared to the location change for proximity. Why then do we observe

higher scores for proximity compared to orientation? It turns out that the
single-dot trials are crucial to interpret this difference. In Fig. 10, response
times and accuracies for the single dot trials are visualized. Although there is
only a small difference in response times, the accuracy difference is clear. It
seems to be the case that detecting a location change along the same
(horizontal) axis is much more difficult, compared to the type of location
changes in the orientation task. This has a small, but apparently non-neg-
ligible influence on the capacity scores, as they are higher for proximity
rather than orientation. Thus, in this type of experiment, it is not possible to
compare the absolute values of the capacity scores of the configural con-
dition for both emergent features, because the single-dot trials are not
matched in difficulty. Although not strictly necessary for the current pur-
poses, it might still be worthwhile for future studies to look into this, and to
try to equate the difficulty of these single-dot trials. One potential way of
achieving this is by manipulating the axis at which the initial reference dots
appear.

Regarding our second goal, we indeed observed considerable inter-in-
dividual variability in capacity scores, as did Hawkins et al. (2016). How-
ever, the correlation between the individual differences in the configural
conditions for orientation and proximity was, at best, weak. Indeed, the
Bayes factors for the correlations for configural trials and differences in Cz
scores indicated that the data cannot discriminate between the presence or
absence of a correlation. Consequently, this analysis suggests that these
emergent features might not rely on the same underlying integration me-
chanism, but could be processed in separate channels. This conclusion is
corroborated by the results of the multivariate analysis of mean response
times and accuracies. Separate factors for orientation and proximity
emerged here as well. A moderate correlation was observed for the control
condition where location changes occurred yet without an associated
change in emergent feature. To us, this indicates that the weak correlation
in the configural condition can not be explained by a general absence of the
ability to detect any meaningful correlation. Indeed, it makes sense that the
ability to detect a “mere location change” does generalize across stimuli that
are different (but still quite similar). Thus, it seems we were able to pick up
on meaningful variability in detecting location changes, but this did not
generalize to correlated variability in the capacity for processing emergent
features. A second aspect that convinced us our data set allowed us to detect
meaningful correlations for capacity scores was that the split-half reliability
of the capacity measures was quite high. Although it is not uncommon to
observe good reliability scores in experimental paradigms (Cappe et al.,
2014; Grzeczkowski et al., 2017), reliability of dependent variables in ex-
periments is not always guaranteed (Hedge, Powell, & Sumner, 2018).
Speculatively, this high reliability for capacity scores might be due to the
fact that we rely on a model-based individual difference measure, rather

Fig. 7. Split-half reliabilities for all capacity z-scores.

Table 1
Split-half reliabilities for the capacity coefficients.

Measure Mean r 95% CI lower bound 95% CI upper bound

Orientation (configural) 0.82 0.74 0.89
Proximity (configural) 0.93 0.90 0.96
Orientation (control) 0.76 0.66 0.85
Proximity (control) 0.83 0.76 0.90

Note. The reliabilities were corrected using the Spearman–Brown formula.
Lower and upper bounds refer to the 2.5% and 97.5% quantiles of the dis-
tribution obtained after simulation (1000 iterations).
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than a common statistic of response times (e.g., the mean or the median). As
this measure is supposed to reflect something genuine about an individual’s
information processing system, it might be the case that this measure is
more robust to slight variations in the dependent variable under con-
sideration (i.e., response times in this case).

In an additional analysis, we explored themultivariate structure of mean
response times and accuracies for all different trial types, as well as for all
capacity scores. For mean response times and accuracies, this analysis re-
vealed that there are separate factors for the orientation and proximity
tasks, corroborating our observation on the weak correlation between ca-
pacity scores for orientation and proximity on configural trials.
Furthermore, we observed a change detection factor and a factor for de-
tecting inward positional displacements. Apart from being informative for
our research questions, this analysis also proved to be fruitful for dis-
covering unanticipated factors related to the task used (i.e., change detec-
tion) or specific stimuli used (i.e., inward displacements for proximity sti-
muli).

The results of this study can be discussed in the context of the recent
vision science literature as well as the recent psychometrics literature. For
vision science, the results seem to be consistent with studies where the main
conclusion is that performance on many visual tasks is at best weakly cor-
related, and if it is correlated, the tasks are highly similar or obviously
measuring the same phenomenon (Cappe et al., 2014; Grzeczkowski et al.,
2017; McGovern, Walsh, Bell, & Newell, 2017). In our case, one can reliably
measure individual differences in processing the emergent features

orientation and proximity, but they do not seem to tap into the same un-
derlying mechanisms. Stated differently, there is no general ability for de-
tecting emergent features. Rather, there are many emergent features, and
individuals might be good at processing one, while bad at processing an-
other.

With respect to the psychometrics literature, can our results be in-
terpreted in the context of the framework on spatial ability presented by
Buckley et al. (2018)? In their framework Buckley et al. (2018) rely on
the Cattell-Horn-Carroll theory of cognitive factors discussed in
Schneider and McGrew (2012), and specifically focus on the visual
processing factor (Gv). Based on the results of the simple pairwise
correlations, as well as the exploratory multivariate analyses, we
speculate that the orientation task mostly relies on the factors Spatial
Orientation, Speeded Rotation, and Movement Detection. That is, these
are all relevant processes for the single- and double-dot trials in the
orientation task. In contrast, for the proximity task, we speculate that a
single factor called Length Estimation might be primarily driving the
individual differences (although Movement Detection could in principle
also contribute). That is, for double-dot trials, estimating the distance
(i.e., proximity) between the dots is sufficient for performing the task.
Analogously, for single-dot trials, this could happen by estimating the
distance relative to fixation. For the more specific change detection
factor, we assume Movement Detection might be the best fitting un-
derlying factor. Last, the factor for detecting inward vs. outward posi-
tional displacements does not fit in any of the factors described by

Fig. 8. Correlation matrix for all dependent variables. The description denotes the dependent variable, specific stimulus or condition as well as whether it was an
orientation or proximity task. rt, acc, and cz refer to response times, accuracies and capacity coefficients, respectively. O and P refer to orientation and proximity. CfC
(configural change), CtC (control change), dNC, lNC, rNC (double, left, and right no change), LC and RC (left and right change) refer to the specific type of change. LD
and LU (left down and up) and P1 to P4 (position 1 to 4) refer to the specific change in position for a particular trial. The ordering of the variables was determined by
hierarchical clustering using the complete linkage method, which aims to find similar clusters.
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Buckley et al. (2018), but it does reflect findings from vision science
studies on expanding vs. contracting motion. That is, observers are
better at detecting motion away from fixation than toward fixation (Ball
& Sekuler, 1980). Furthermore, observers show more efficient visual
search for an expanding target in a set of contracting distractors com-
pared to searching for a contracting target in a set of expanding dis-
tractors (Takeuchi, 1997). Last, neuropsychological evidence indicates
that contracting objects show more visual extinction compared to
looming objects (Dent & Humphreys, 2011). Thus, this last, specific,
fine-grained factor seems consistent with the literature on motion
processing. Of course, we have to stress that a discussion of our results
in the context of these visual factors is purely based on intuiting how
well these factors encompass our behavioral tasks. Validation studies
are necessary to assess whether tasks such as the one used here effec-
tively load on the factors we suggested earlier in this paragraph. That is,

future studies should assess whether performance on standardized tasks
that strongly load on Spatial Orientation, Speeded Rotation, Movement
Detection, and Length Estimation cluster together with performance on
the orientation and proximity tasks used here.

A potential alternative explanation for our results is that, in fact, there is
a strong correlation between processing orientation and proximity, but our
design was not suited to reveal such a correlation. That is, in this study,
capacity for orientation and proximity was always assessed in a blocked
manner, counterbalanced across participants (i.e., first session was either
orientation or proximity, and the other task in the second session). Our
reliability analysis showed that capacity scores are robust within sessions,
but they might show day-to-day variability (i.e., state-like behavior as in
Wexler, Duyck, & Mamassian (2015) or Wexler (2018)) rendering the cor-
relation between orientation and proximity virtually nil. This type of rea-
soning could be motivated by the relatively poor test–retest reliability that is

Fig. 9. Correlation matrix for capacity coefficients.
The description denotes the dependent variable,
specific stimulus or condition as well as whether it
was an orientation or proximity task. cz refers to
capacity coefficient. O and P refer to orientation and
proximity. Cf refers to configural trials, and Ct to
control trials. The ordering of the variables was de-
termined by hierarchical clustering using the com-
plete linkage method, which aims to find similar
clusters.

Fig. 10. Summary of results for single-dot trials. (a) Mean response times for both emergent features. (b) Mean accuracies for both emergent features. Error bars
indicate mean +/- 2 SEM.
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commonly observed for experimental measures (Enkavi et al., 2019; Hedge
et al., 2018). This could be addressed by measuring capacity for orientation
and proximity within the same experimental session, and repeating this in a
second experimental session. Based on the work of Rouder and Haaf (2019)
however, we predict that such a design would reveal stability of the capacity
coefficients. That is, for experimental measures it has been shown that
average or poor test–retest reliability stems from measurement error in the
measure, rather than genuine inter-individual variability across sessions.
Hierarchical modeling of these measures can be used to take measurement
error into account, and this approach has revealed that most of the ex-
perimental measures show high test-retest reliabilities (i.e., correlations>
.9). Thus, although an explanation of the absence of a correlation based on
day-to-day variability of capacity coefficients still needs to be empirically
ruled out, we believe that the literature provides a sufficiently compelling
argument for why this would not be the case.

Systems Factorial Technology is an information processing frame-
work that includes measures beyond workload capacity. Future studies
could rely on these additional measures to uncover the specific me-
chanisms underlying the processing of emergent features. Indeed, it
might be that workload capacity does not show a correlation across
emergent features, but other measures such as the mean interaction
contrast or the survivor interaction contrast do show one. For this, a
saliency manipulation (saliency of the change of emergent features)

would be required. This type of study would allow one to characterize
not only workload capacity, as was done in the current study, but also
processing architecture and stopping-rule. In general, we believe the
Systems Factorial Technology framework is very versatile, allowing for
numerous experimental manipulations, that open up new avenues for
studying emergent features. Moreover, the design of the current study is
very easy to adapt and allows for additional manipulations that could
strengthen the conclusions from this study. Possible future manipula-
tions include a different baseline orientation (vertical instead of hor-
izontal) and a different number of dots. Increasing the number of dots
would allow to study other emergent features such as linearity and
symmetry, thereby enabling us to uncover the potentially different
processes underlying different emergent features.
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Appendix A. Correlation matrices for response times and accuracies

Figs. A.1 and A.2.

Fig. A.1. Correlation matrix for response times to all different stimuli. The description denotes the dependent variable, specific stimulus or condition as well as
whether it was an orientation or proximity task. rt refers to response times. O and P refer to orientation and proximity. CfC (configural change), CtC (control change),
dNC, lNC, rNC (double, left, and right no change), LC and RC (left and right change) refer to the specific type of change. LD and LU (left down and up) and P1 to P4
(position 1 to 4) refer to the specific change in position for a particular trial. The ordering of the variables was determined by hierarchical clustering using the
complete linkage method, which aims to find similar clusters.
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